SRM University, Kattankulathur Faculty of Engineering and Technology, Department of Information Technology 15IT327E- CRYPTOGRAPHY Cycle Test -2

: B.Tech Degree Year/Sem : III/5TH SEM

Duration: 3hrs

Specialisation: IT/CSE/SWE Date: 25/10/2017 Max. Marks: 100

	10.000	3. 44(Migar 2)		Regis	ter Number
			PERSONAL PROPERTY.		

Instructional Objective covered in this test:

103. Understand various block cipher and stream cipher models.

IO4. Describe the principles of public key cryptosystems, hash functions and digital signature.

105. Gain a first-hand experience on encryption algorithms, encryption modes.

Student outcome covered in this test:

1.An ability to use and apply current technical concepts and practices in the core information technologies.

- jl.An ability to use and apply current technical concepts in the core information technologies
- j2. An ability to use and apply current practices in the core information technologies
- 2.An ability to use current techniques, skills, and tools necessary for computing practice.
 - il.An ability to understand current techniques and Skills.

Mark Allotment

Mark All	Instructional	Course	Sub		Marks		Mark Scored
Question No	Objectives		Outcome	Max Marks	Obtained Marks	Met/Not Met	(/100)
1	103	j	jl				
2	IO3	j	j1				
3	IO3	j	j1			_	
4	103	j	jl				ļ
5	103	j	jl.				
6	103	j	jl				
7	IO3	j	jl				
8	IO4	j j	j2				
9	IO4	j	j2				40.00
10	104	j	j2				
11	IO4	j	j2				
12	104	j	j2				
13	IO4	j	j2				
14	104	j	j2				
15	104	j	j2				
16	104	j	j2				
17	104	j	j1				
18	104	Ti	jl				
19	105	i	il				
20	105	i	il				

	The DES Algorithm Cipher System consist a) 12 b) 18	r all the Questions) (20*1=20 Marks)						
	round key	(20*1=20 Marks)						
	a) 12	ts ofrounds (iterations) each with a						
	7 10	Tounds (iterations) each with a						
2.	c) 0	d) 16						
	DES follows	3) 10						
	a) Hash Alcourt							
	b) Caesars Cipher	A.D						
3.		c) Feistel Cipher Structure d) SP Networ						
	a) Electronic Codebook Book (ECR)							
	a) Electronic Codebook Book (ECB) c) Cipher FeedBack (CEB)	of plaintext and ciphertext						
	c) Cipher FeedBack (CED)	c) Cipher FeedBack (CFB) b) Cipher Block Chaining (CBC) d) Output FeedBack (OFB)						
	cuck (CLB)	d) Output FeedBack (OFB)						
4.	The 4×4 buts							
	The 4×4 byte matrices in the AES algorith	am are called						
	a) States b) Words	c) Transitions d) Permutations						
5.	Which of the following slows the cryptogr	raphic algorithm						
	1) Increase in Number of rounds	1) Increase in Number of rounds						
	2) Decrease in Block size							
	3) Decrease in Key Size							
	4) Increase in Sub key Generation	1) 2 1 4						
	a) 1 and 3 b) 2 and 3	c) 3 and 4 d) 2 and 4						
_	For the AES-128 algorithm there are	similar rounds and round is						
0.	FOR the AES-126 argument and							
	J: fforent							
	different. a) 2 pair of 5 similar rounds; every altern							
	different. a) 2 pair of 5 similar rounds; every altern b) 9; the last							
	different. a) 2 pair of 5 similar rounds; every altern b) 9; the last							
	different. a) 2 pair of 5 similar rounds; every altern b) 9; the last c) 8; the first and last	nate						
	different. a) 2 pair of 5 similar rounds; every altern b) 9; the last c) 8; the first and last	nate						
	different. a) 2 pair of 5 similar rounds; every altern b) 9; the last c) 8; the first and last	nate						
	different. a) 2 pair of 5 similar rounds; every altern b) 9; the last c) 8; the first and last d) 10; no	32 bits, which is expanded to 48 bits via b) Duplication of the existing bits						
	different. a) 2 pair of 5 similar rounds; every altern b) 9; the last c) 8; the first and last d) 10; no In the DES algorithm the Round Input is Scaling of the existing bits	nate						
7.	different. a) 2 pair of 5 similar rounds; every altern b) 9; the last c) 8; the first and last d) 10; no In the DES algorithm the Round Input is a) Scaling of the existing bits	32 bits, which is expanded to 48 bits via b) Duplication of the existing bits d) Addition of ones						
	different. a) 2 pair of 5 similar rounds; every altern b) 9; the last c) 8; the first and last d) 10; no In the DES algorithm the Round Input is a) Scaling of the existing bits	32 bits, which is expanded to 48 bits via b) Duplication of the existing bits d) Addition of ones						
	different. a) 2 pair of 5 similar rounds; every altern b) 9; the last c) 8; the first and last d) 10; no In the DES algorithm the Round Input is a) Scaling of the existing bits	32 bits, which is expanded to 48 bits via b) Duplication of the existing bits d) Addition of ones						
7.	different. a) 2 pair of 5 similar rounds; every altern b) 9; the last c) 8; the first and last d) 10; no In the DES algorithm the Round Input is a) Scaling of the existing bits	32 bits, which is expanded to 48 bits via b) Duplication of the existing bits d) Addition of ones						
7.	different. a) 2 pair of 5 similar rounds; every altern b) 9; the last c) 8; the first and last d) 10; no In the DES algorithm the Round Input is a) Scaling of the existing bits c) Addition of zeros How many keys does the Triple DES alg b) 3	32 bits, which is expanded to 48 bits via b) Duplication of the existing bits d) Addition of ones sorithm use? c) 2 or 3 d) 3 or 4						
	different. a) 2 pair of 5 similar rounds; every altern b) 9; the last c) 8; the first and last d) 10; no In the DES algorithm the Round Input is a) Scaling of the existing bits c) Addition of zeros How many keys does the Triple DES alg b) 3	32 bits, which is expanded to 48 bits via b) Duplication of the existing bits d) Addition of ones sorithm use? c) 2 or 3 d) 3 or 4						
7.	different. a) 2 pair of 5 similar rounds; every altern b) 9; the last c) 8; the first and last d) 10; no In the DES algorithm the Round Input is a) Scaling of the existing bits c) Addition of zeros How many keys does the Triple DES alg b) 3 a) 2	32 bits, which is expanded to 48 bits via b) Duplication of the existing bits d) Addition of ones sorithm use? c) 2 or 3 d) 3 or 4 nich have size c) 72 bits d) 128 bits						
7.	different. a) 2 pair of 5 similar rounds; every altern b) 9; the last c) 8; the first and last d) 10; no In the DES algorithm the Round Input is a) Scaling of the existing bits c) Addition of zeros How many keys does the Triple DES alg b) 3 a) 2	32 bits, which is expanded to 48 bits via b) Duplication of the existing bits d) Addition of ones sorithm use? c) 2 or 3 d) 3 or 4 nich have size c) 72 bits d) 128 bits						
7. 8.	different. a) 2 pair of 5 similar rounds; every altern b) 9; the last c) 8; the first and last d) 10; no In the DES algorithm the Round Input is a) Scaling of the existing bits c) Addition of zeros How many keys does the Triple DES alg b) 3 a) 2	32 bits, which is expanded to 48 bits via b) Duplication of the existing bits d) Addition of ones sorithm use? c) 2 or 3 d) 3 or 4 nich have size c) 72 bits d) 128 bits						
7.	different. a) 2 pair of 5 similar rounds; every altern b) 9; the last c) 8; the first and last d) 10; no In the DES algorithm the Round Input is a) Scaling of the existing bits c) Addition of zeros How many keys does the Triple DES alg b) 3 a) 2	32 bits, which is expanded to 48 bits via b) Duplication of the existing bits d) Addition of ones sorithm use? c) 2 or 3 d) 3 or 4 nich have size c) 72 bits d) 128 bits						
7.	different. a) 2 pair of 5 similar rounds; every altern b) 9; the last c) 8; the first and last d) 10; no In the DES algorithm the Round Input is a) Scaling of the existing bits c) Addition of zeros How many keys does the Triple DES alg b) 3 a) 2 Blowfish encrypts blocks of plaintext wh b) 64 bits a) 256 bits b) Round size	32 bits, which is expanded to 48 bits via b) Duplication of the existing bits d) Addition of ones sorithm use? c) 2 or 3 d) 3 or 4 nich have size c) 72 bits d) 128 bits						
7.	different. a) 2 pair of 5 similar rounds; every altern b) 9; the last c) 8; the first and last d) 10; no In the DES algorithm the Round Input is a) Scaling of the existing bits c) Addition of zeros How many keys does the Triple DES alg b) 3	32 bits, which is expanded to 48 bits via b) Duplication of the existing bits d) Addition of ones sorithm use? c) 2 or 3 d) 3 or 4 nich have size c) 72 bits d) 128 bits						

11.	Elliptic curve cryptography	uses curves	whose variab	les & coefficients	are finite	
	a) Finite elliptic curve	b)Prime cui		c) Binary curves	d) Base	curves
12.	Calculate the number of sub a) 40	okeys require b) 38				
13.	a) S-box b) P-box c) Expansion permutations d) Key transformation		cepts 48 bits	from XOR operat	ion	
14.	The input to the encryption a) 32	and decryp b) 128	tion algorith	m of AES is a sing	gle	_block. d) 16
15.	Themu operation.	st be a data	block that is	unique to each ex		
	a) key	b) IV		c) nonce	d) (CBC
16.	ElGamal encryption syste a) symmetric key encrypt b) asymmetric key encrypt c) not an encryption algor d) none of the mentioned	ion algorith tion algorit				
17.	The DSS signature uses value a) MD5 b) SHA-	vhich hash a 2	algorithm? c) SHA-1	d) Does no	ot use hash al	gorithm
	MD5 produces bits ha a) 128	0) 150		c) 160		d) 112
	Message authentication of a) key code c) hash code		d) messag	ash function e key hash funct		ige has not be
20.	A hash function guarante a) Replaced b) O	ees integrity ver view	y Of a mess) Changed	d) Vi	olated

Cycle Test - 1

Degree ; B,Tech Year/Sem : 111/5¹⁸ SEM Duration : 3 hours

Specialisation: 1116 4414414 17#1K-25/19/2917 Max. Market 1141

(5 × 4 -20 Marks)

Part B [Answer any five questions]

- 21. Diagrammatically represent public key cryptosystem used for authentication 22. State the strength and weakness of DES
- 23. What are the characteristics of blowfish.
- 24. What is man-in-the-middle attack?
- 25. Write short note on elliptic curve cryptography?
- 26. Why SHA is more secure than MD5?
- 27. Explain signing and verifying in DSS

Part C [Answer all the Questions] (5 X 12 -60 Marks)

28a. Explain the Feistel Cipher Structure in detail?

OR

- 28b. Explain the working principles of RC5.
- 29a. Discuss about techniques used for distribution of public keys.

- 29b. Explain in detail about of DES with neat diagram
- 30a. Explain in detail about MAC and Hash Function with neat diagrams.

[OR]

- 30b.Explain in detail about RSA algorithm. Given p=17, q=11, e=7, generate public and private keys, also encrypt and decrypt message 88.
- 31a. Explain in detail about Diffie Hellman Key Exchange protocol with example.

[OR]

- 31b. Explain the working of elliptic curve cryptography, brief out how it is applied in cryptography.
- 32a.Explain the working principles of SHA Algorithm.

[OR]

32b.Explain the working principles of MD5 Algorithm

**** ALL THE BEST ****